And now for long delayed show notes...
 
One of my favorite things to do with students in the late fall is to take them outside and point first to the Orion nebula, then to the Pleiades, and finally to the Hyades cluster, saying “these are snap shots in the evolution of open clusters.” Each of these systems is the home of young stars, but while the Orion nebula is very much a stellar nursery, with stars just 10 million years old or younger, the Pleiades, is more like a day care center with stars 100 million years old or younger. At the same time, Hyades is more like an afterschool program for stars 730 million years old or younger. All these systems are filled with celestial children. In their youth these stars still gather in clumps. But, as they age, the stars will drift apart until, as adults, they have no memory of the place they were born.

Here are some links to help you share this magical story of science with the learners in your life:

To save you a click, I'm going to copy in the full text of the story of how our Sun lost its siblings below:


Once upon a time, somewhere in our galaxy, our Sun’s atoms were part of a giant molecular cloud. Approximately 7 billion years ago, that molecular cloud was bumped. Exactly what did the bumping no one knows. That anonymous bump so shocked the dark molecular cloud that in recoiled and collapsed in on itself. At first this inward spiral wasn’t at all dramatic, and an imaginary space traveler looking at this shocked cloud with her imaginary eyes might not have perceived the motion. Over time, however, momentum built up, and the collapse gained speed, with the densest parts of the cloud pulling themselves into fragments, as more ethereal parts were left behind to collapse more slowly. In one of these collapsing regions a womb of gas and dust that was neither too big nor too small began to glow as a single star exhaled its first breath of heat. As it grew and began to illuminate its surroundings, a disk formed; a disk containing just enough stardust to someday form 8 planets and a lot of harder to categorize smaller bits.


While this star, which would come to be called “The Sun,” was busy forming, its nursery mates were similarly busy growing, glowing, and in some cases even going an extra step and exploding. This stellar nursery was filled with screaming stars that wept radio waves and threw off high energy jets as they tried to find their way onto the main sequence. While these stars wailed and grabbed at matter, they also traveled as a pack around the galaxy. While we can’t do more than guess at the Sun’s original orbital position, we know that today it takes about 135 million years for the Sun to orbit the galaxy. Let’s assume for a minute that the Sun emerged from the center of of that cluster. This would put it in a position to watch some of its nursery mates race ahead around the galaxy, take less time to orbit, while other of its nursery mates slowly fell behind, taking longer to orbit (and a few just explode themselves into oblivion as supernovae). After a few orbits and a few hundreds of millions of years, these differences in speed caused the fastest (and slowest) stars to fall out of the cluster, as their positions no longer made it possible for the casual observer to match them up with their cluster of origin. Over time, differences in orbital velocities drew more and more of the stars away from their siblings. Eventually, it became impossible to tell exactly which stars made up those sibling stars to the Sun.


The Sun, like its sisters and brothers, simply fell out of the cluster as it raced around the galaxy, just as a runner might fall away from the pack.


We are an orphan system, alone in the galaxy. Unlike the majority of stars, our Sun has no companion. Having escaped the chaos of our home, we are now simply alone.